Chessboard Distributions and Random Vectors with Specified Marginals and Covariance Matrix
نویسندگان
چکیده
There is a growing need for the ability to specify and generate correlated random variables as primitive inputs to stochastic models. Motivated by this need, several authors have explored the generation of random vectors with specified marginals, together with a specified covariance matrix, through the use of a transformation of a multivariate normal random vector (the NORTA method). A covariance matrix is said to be feasible for a given set of marginal distributions if a random vector exists with these characteristics. We develop a computational approach for establishing whether a given covariance matrix is feasible for a given set of marginals. The approach is used to rigorously establish that there are sets of marginals with feasible covariance matrix that the NORTA method cannot match. In such cases, we show how to modify the initialization phase of NORTA so that it will exactly match the marginals, and approximately match the desired covariance matrix. An important feature of our analysis is that we show that for almost any covariance matrix (in a certain precise sense), our computational procedure either explicitly provides a construction of a random vector with the required properties, or establishes that no such random vector exists.
منابع مشابه
Chessboard Distributions and Random Vectors with Speci ed
There is a growing need for the ability to specify and generate correlated random variables as primitive inputs to stochastic models. Motivated by this need, several authors have explored the generation of random vectors with speciied marginals, together with a speciied covariance matrix, through the use of a transformation of a multivariate normal random vector. A covariance matrix is said to ...
متن کاملDetermination of Maximum Bayesian Entropy Probability Distribution
In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.
متن کاملMoment Estimator for Random Vectors with Heavy Tails
If a set of independent, identically distributed random vectors has heavy tails, so that the covariance matrix does not exist, there is no reason to expect that the sample covariance matrix conveys useful information. On the contrary, this paper shows that the eigenvalues and eigenvectors of the sample covariance matrix contain detailed information about the probability tails of the data. The e...
متن کاملCovariance Estimation for Distributions with 2 + Ε Moments
We study the minimal sample size N = N(n) that suffices to estimate the covariance matrix of an n-dimensional distribution by the sample covariance matrix in the operator norm, with an arbitrary fixed accuracy. We establish the optimal bound N = O(n) for every distribution whose k-dimensional marginals have uniformly bounded 2+ε moments outside the sphere of radius O( √ k). In the specific case...
متن کاملEIGENVECTORS OF COVARIANCE MATRIX FOR OPTIMAL DESIGN OF STEEL FRAMES
In this paper, the discrete method of eigenvectors of covariance matrix has been used to weight minimization of steel frame structures. Eigenvectors of Covariance Matrix (ECM) algorithm is a robust and iterative method for solving optimization problems and is inspired by the CMA-ES method. Both of these methods use covariance matrix in the optimization process, but the covariance matrix calcula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Operations Research
دوره 50 شماره
صفحات -
تاریخ انتشار 2002